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Collapsing shock-bounded cavities in fast/slow (F/S) spherical and near-spherical
configurations give rise to expelled jets and vortex rings. In this paper, we simu-
late with the Euler equations planar shocks interacting with an R12 axisymmetric
spherical bubble. We visualize and quantify results that show evolving upstream and
downstream complex wave patterns and emphasize the appearance of vortex rings.
We examine how the magnitude of these structures scales with Mach number. The
collapsing shock cavity within the bubble causes secondary shock refractions on the
interface and an expelled weak jet at low Mach number. At higher Mach numbers
(e.g. M = 2.5) ‘vortical projectiles’ (VP) appear on the downstream side of the bubble.
The primary VP arises from the delayed conical vortex layer generated at the Mach
disk which forms as a result of the interaction of the curved incoming shock waves
that collide on the downstream side of the bubble. These rings grow in a self-similar
manner and their circulation is a function of the incoming shock Mach number. At
M = 5.0, it is of the same order of magnitude as the primary negative circulation
deposited on the bubble interface. Also at M = 2.5 and 5.0 a double vortex layer
arises near the apex of the bubble and moves off the interface. It evolves into a VP,
an asymmetric diffuse double ring, and moves radially beyond the apex of the bub-
ble. Our simulations of the Euler equations were done with a second-order-accurate
Harten–Yee-type upwind TVD scheme with an approximate Riemann Solver on mesh
resolution of 803× 123 with a bubble of radius 55 zones.

1. Introduction
Phenomena in shock-accelerated gas flows arise in laser-induced (‘inertial confine-

ment’) fusion, supersonic combustion and supernova astrophysics.
The shock–gas bubble interaction was first studied experimentally by Rudinger

& Sommers (1960). About ten years ago Haas & Sturtevant (1987) investigated
experimentally shock–cylinder and shock–sphere interactions at low Mach number
for both the fast/slow (F/S) and slow/fast (S/F) case to examine the nature of
shock refractions. For the spheres, let us scrutinize what they observed and reported
concerning vortex related phenomena.
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For a He spherical bubble in air at M = 1.25 (figure 8e at 350 µs) ‘The air jet
impinges on the downstream He–air interface and pierces it’. ‘Forming a more distinct
vortex ring than in the cylindrical case. . . . The small scales evident on the vortex ring
at later times . . . indicate that it contains most of the vorticity in the flow and is the
region in which the most intense mixing takes place.’ Later they say, ‘Concentrated
vorticity also occurs along the conical shear layer at the boundary of the reentrant
jet in the main body. . . ’.

For R22 in air at M = 1.25 (figure 14 at 507 µs.) ‘it is seen that the deformation of
the wedge created by the transmitted wave near its focus, ultimately forming a narrow
axial jet, is much more extreme than in the cylindrical case, presumably because of
the stronger focus in axial symmetry. On the other hand, the surrounding vortex,
which in the cylindrical case is a vortex pair, is much more diffuse.’ They also note
that the hanging bubble is an ‘oval’ and hence not perfectly axisymmetric.

In the experiments, images were provided as single shadowgraphs per run. Since
shadowgraphs provide density fluctuation information, they do not give a quantitative
discussion of vorticity but only a broad view. In particular, they do not indicate any
of the following:

(a) The generation of secondary (opposite-signed) vorticity in the region where the
incoming shock intersects the density-stratified interface.

(b) The intensification of pressure and temperature within the internal imploding
cavity.

(c) The mechanism of axial ‘jet-ring’ formation after the imploding cavity is focused
to its smallest volume or after the incoming shock ceases contact with the downstream
side of the heavier bubble.

(d) The emergence of vortical projectiles.

Early axisymmetric simulations were made by Picone & Boris (1988) (for M = 1.25
and air/Freon-22) and by Cowperthwaite (1992) (for M = 1.12 and air/Freon-12).
Some of the above enumerated phenomena were revealed in the high resolution
axisymmetric simulations by Winkler et al. (1987) and recently in the high-resolution
simulations of interstellar clouds by Klein, Mckee & Colella (1994). However, the
causative effects and the scaling of phenomena were not presented and will be given
below. Samtaney & Zabusky (1993, 1994), using a local shock polar analysis, proposed
models for the circulation deposited in two-dimensional shock–interface interactions,
including cylinders.

In this paper we examine with inviscid codes at Mach numbers up to M = 5 the
behaviour at early times, when the shock is passing over the bubble and primary
vorticity is deposited on the bubble interface, and at intermediate times, when the
incident shock is no longer in contact with the bubble and the transmitted shock
wave forms an internal cavity which implodes into a small focal domain.

During the intermediate time interval the deposited negative vorticity continues
to roll up and, at higher Mach numbers, separates from the interface. Also, the
incident shock has been curved by passing over the bubble and interacts with itself
on the downstream side of the bubble and generates a Mach disk and conical vortex
layers which roll up into vortex rings, which have a self-similar character and can
be supersonic. We have also found something new and significant that is revealed
clearly at M = 5, namely double vortex rings form on the top or near the apex of the
bubble. For all the Mach numbers examined the bubble is sheared into small-scale
structures. We believe that at late times a proper study of mixing will require the
use of much higher resolution codes. During these time periods the processes of
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wave reflection, refraction, and focusing inside or outside a bubble all play important
roles.

2. Equations of motion and numerical method for multi-species flow
2.1. Basic equations

We use a shock-capturing numerical method to solve the compressible Euler equations
in a two-dimensional axisymmetric two species representation. The gases are assumed
to be inviscid, perfect and in thermal equilibrium with no chemical reactions between
species. The basic equations of the conservation of mass, momentum and energy in
the generalized coordinate system can be written in a concise form as

Û t + F̂ ξ + Ĝη + Ŵ = 0, (1)

where

(Û , F̂ , Ĝ, Ŵ ) =
1

J
(U , ξxF + ξrG, ηxF + ηrG,W ), (2)

where the Jacobian of transformation

J = ξxηr + ηxξr. (3)

Here, U = [ρ1, ρ2, ρu, ρv, E]T , F = [ρ1u, ρ2u, ρu
2 +p, ρuv, (E+p)u]T , G = [ρ1v, ρ2v, ρuv,

ρv2 +p, (E+p)v]T , and W = (1/r)[ρ1u, ρ2u, ρu
2, ρuv, (E+p)u]T . In the above equations,

t, x and r indicate time, and the space co-ordinates in horizontal and radial directions,
ρ, p, E, u, and v are the density, the pressure, the total energy per unit volume and
velocity in the x- and r-directions, respectively.

The system is closed by a perfect gas equation of state

p = (γ − 1)ρe = (γ − 1)
[
E − ρ

2

(
u2 + v2

)]
, (4)

where

p = ρ1R1T + ρ2R2T =

(
ρ1

m1

+
ρ2

m2

)
RT . (5)

Here T is the temperature, mi is the molecular weight, Ri is the gas constant, and
γi is the specific heat ratio for both ambient and bubble gases. Subscripts 1 and 2
indicate ambient and the bubble gas, e.g. air and R12, respectively.

From the above we can show that

p = {γ1z1 + γ2z2 − 1}ρe, (6)

or in regions where the gases interdiffuse the effective specific heat ratio is given by
the interpolation

γ = γ1z1 + γ2z2 (7)

where

zi =
ρi/[mi(γi − 1)]
ρ1

m1(γ1 − 1)
+

ρ2

m2(γ2 − 1)

.

The local sound speed is defined by c2 = (γp/ρ).

2.2. Boundary conditions

The computational domain considered in the present work is illustrated in figure 1,
where the base flow field consists of a spherical bubble region and an ambient air
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Figure 1. Schematic of axisymmetric computational domain and boundary conditions. Bound-
aries are inflow/outflow (i.e. non-reflective, NR) or relective, u · n = 0. The bubble interfaces are
designated: FS, for front side (or upstream); or BS, back side (or downstream).

region. The boundary may be arbitrary and is described by unit tangent and normal
vectors l and n, where

l · n = 0. (8)

For axisymmety, the boundary condition is

u · n = 0, (9)

∂ (u · l)
∂n

= 0, (10)

where u=(u, v)T is the velocity. Only (9) is applied on the axis. Equation (10) denotes
that the shear stress equals zero on the boundary interface.

For the inflow and outflow boundaries in figure 1, we utilize the multidimensional
compatibility relations (Hirsch 1992) for the momentum equation

n ·Dt±u±
1

ρc
Dt±p± c[∇ · u− n · (n · ∇) u] = 0, (11)

where

Dt± =
∂

∂t
+ (u± cn) · ∇, (12)

indicates the derivative along the bicharacteristics (u±cn). In this compatibility rela-
tion, the first two terms correspond exactly to the one-dimensional Riemann variables,
but are written for the velocity component in direction n. The compatibility relation
for constant n leads to the following expression:

Dt±R
±
n = ∓cn · (n · ∇) u. (13)

The Riemann variables R±n associated with the direction n for an isentropic flow are
defined by

R±n = u · n± 2c

γ − 1
. (14)

As in the one-dimensional case, let us assume that the pressure and the velocity are
uniform on the boundary surface, and that the flow is isentropic. According to (13),
the Riemann variables R+

n and R−n are now constants along the slopes u + cn and
u− cn. Equation (14) corresponds to the incoming and outgoing characteristics. Thus,
the compatibility relations at the boundary can be written as

R+
B = uB +

2cB
γ − 1

= uL +
2cL
γ − 1

, (15)
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Figure 2. Schematic illustration of the inflow boundary condition.

Gas Molecular weight Gas constant Specific heat Speed of sound
R (J kg−1 K−1) γ c (m s−1)

Air 28.96 287.1 1.402 343
R12 120.9 68.8 1.141 152

Table 1. Interface parameters

R−B = uB −
2cB
γ − 1

= uR −
2cR
γ − 1

, (16)

where the subscript B, L and R indicate the value at the boundary, x = xL and
x = xR , respectively. xR is an internal mesh point, and its values are obtained as the
solution at t = n∆t by an appropriate extrapolation at the mesh point close to the
boundary. The value at x = xL is the free-stream value, which is given as a physical
boundary condition. The schematic illustration of the inflow boundary condition is
shown in figure 2.

The boundary values of the normal velocity uB and speed of sound cB are obtained
by adding and subtracting equations (15) and (16) leading to

uB =
RB

+ + RB
−

2
, (17)

cB =
(
RB

+ − RB−
) γ − 1

4
. (18)

This method is easily generalized to many fluid species and complex boundaries in
three dimensions.

2.3. Initial conditions and normalization

We use a dense spherical bubble of R12 whose ambient parameters are in table 1. The
density initial ratio η = 4.17 and the initial air pressure/density ratio is p0/ρ0 = RT0

where T0 = 293 k.
We drive the system with a plane shock wave of Mach numbers 1.14, 1.5, 2.5 and

5.0. The first case we consider is the weak shock and corresponds to the experiment
by Philpott et al. (1992).

The mesh resolution is 803 × 123 zones and the radius of the bubble is 55 zones.
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Figure 3. Density, velocity and pressure distribution along the x-axis in a shock-bubble interaction.
M = 1.5, air–R12 bubble of radius 55 zones: –◦–◦–◦–, t = 1.7 × 10−4; –4–4–, t = 5.1 × 10−4;
–2–2–, t = 2.5× 10−3.

At t = 0 the shock is 20 zones to the left of the bubble. As shown in figure 3, a
Mach 1.50 shock translates 13 zones in four time steps. The size of a time step is
determined from the CFL condition. Initially, the thickness of the shock front and
bubble interface are each two zones. Time is normalized as tM (where M is the Mach
number) and distance by the bubble radius r0. Note, it takes 0.0025 normalized time
units for a shock to translate a distance r0 in air.

2.4. Numerical methods

Shock wave refraction at a gaseous interface is normally accompanied by wave prop-
agation, reflection and diffraction. Under these conditions, the numerical simulation
becomes rather complicated and difficult. Among the several formal concepts pro-
posed in the literature to treat the weak solution problem, we select a scheme that
suppresses spurious oscillations. A Harten–Yee second-order-accurate, upwind finite-
difference scheme (Harten 1993; Yee, Warming & Harten 1985) based on the TVD
(total variation diminishing) algorithm was applied to equations (1) to (4) and (7).
The key idea is to evaluate the fluxes of mass, momentum and energy from solutions
to TVDs that arise at each cell interface. Here we present only a brief description of
the algorithm.

An operator splitting is performed on equation (1), whereby the two-dimensional
axisymmetric equations are split into sets of three one-dimensional equations. The
splitting is represented by the one-dimensional operators, Lξ , Lη , Ls as follows:
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for Lξ by

Û t + F̂ ξ = 0,

for Lη by

Û t + Ĝη = 0.

for Ls by

Û t + Ŵ = 0.

Thus, (1) can be written as

Û n+2
i,j = LξLηLsLsLηLξÛ

n
i,j , (19)

where Û n
i,j = Û (n∆t, i∆ξ, j∆η), superscript n is the time level, and subscripts i and

j are the coordinates of the mesh. For the source term, Ŵ , the operator, LsÛ
n
i,j

is calculated by the secondary-order Runge–Kutta integration. The finite-difference
operator for Lξ is given by

Û ∗i,j = LξÛ
n
i,j = Û n

i,j −
∆t

∆ξ
[F̂ n

i+1/2,j − F̂ n
i−1/2,j]. (20)

An approximate Riemann solver, developed by Roe (1981, 1983) is used in the scheme.
It is based on a characteristic decomposition of the flux differences while ensuring
the conservation properties of the scheme. According to this solver, the flux F̂ i+1/2 is

F̂ i+1/2,j = 1
2

(
F̂ i+1,j + F̂ i,j + Ri+1/2Φi+1/2

)
, (21)

where Ri+1/2 is the right-hand eigenvector of the Jacobian matrix, and Φ is the

modified flux vector. To obtain the flux Ĝ for Lη , we use an equation similar to (21).

2.5. Visiometric methods

As described in Bitz & Zabusky (1990), we visualize and quantify the scalars: density,
ρ; dilatation, div u (to highlight wavefronts and shock waves); vorticity, ω,

ω = eφ · ∇× u, (22)

and the numerical shadowgraph, ∆ρ (to juxtapose contact discontinuities and shock
fronts). Here, eφ represents the azimuthal unit vector normal to the plane of the
calculation. The Laplacian may oscillate in space and so is reserved for early time
analysis.

To obtain a global view of the flow we project the solution to a lower dimensions
by presenting space–time diagrams of integrated vorticity and positive vorticity as
well as the pressure on the axis. The integrated positive and negative vorticity can be
written

γ±(x, t) =

∫
ω±(x, r, t)dr. (23)

The domain of integration is chosen to highlight specific phenomena. For example, to
examine the negative circulation on the interface and within the bubble we accumulate
only those cells with ω− < 0 that coincide with the location of ρ2, the bubble fluid.
Similarity, we accumulate all ω+ > 0 to examine secondary vortex process. These
arise from ‘baroclinic’ processes in the equation

Dω

Dt
=

1

ρ2
∇ρ× ∇p− ω (∇ · u) + (ω · ∇) u. (24)
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Figure 4. Schematic illustration of rays and wave fronts at various times for a F/S gaseous bubble
interface: BB, bubble interface; uR, upstream reflected; iT, interior transmitted; iR, interior reflected;
dT, downstream transmitted; uT, upstream transmitted. The bubble boundary and wavefronts are
solid lines. The rays after iT are dashed lines.

In two-dimensions the last term is omitted and we find that the second, or dilatation
term, plays a small role for the parameter range and time intervals being considered.
The dominant primary vorticity arises from the first, or baroclinic, term. A layer
of vorticity is generated due to the misalignment of the local pressure and density
gradients. Roughly, for F/S, a negative layer is deposited because the pressure gradient
is associated with the shock and is in the −x direction while the density gradient is in
the radial direction. Another source of vorticity is the developing curvature of shocks
or the interaction of shocks, e.g. which arises at a Mach disk on the downstream side
of the bubble.

3. Results and discussion
3.1. Wave patterns and correlation with vortex deposition

To help interpret phenomena, particularly complex shock wave patterns, we present
the geometric acoustical ray and wave front diagram for a heavy (e.g. R12) bubble
in air in figure 4. For this strongly convergent lens, we see: incident planar (I) and
upstream reflected curved (uR) rays and wavefronts; a transmitted curved wavefront
in the bubble (iT); and curved wavefronts transmitted from the bubble to the outer
upstream and downstream sides (uT and dT). Snell’s Law describes the refraction
angles and can be written as

n =
sin θi
sin θr

=
c1

c2

, (25)

where, θi and θr are the angles of the incident and refraction rays and c1 and c2 are
the speeds of sound in the fast and slow mediums.

When a planar shock wave collides with an oblique gaseous interface, it refracts
over it either as a regular refraction (RR) or an irregular refraction (IR). This depends
on the local angle of the incident shock, αi, the Mach number of the incident shock
wave, M, as well as the characteristic parameters of the gases, such as densities and
specific heat ratio. All types of configurations, from RR to IR, will appear as the
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Figure 5. Numerical shadowgraph, ∆ρ, for shock refraction on an air–R12 bubble in cases (a)
M = 1.14, (b) M = 2.5 and (c) M = 5.0. Time is normalized as tM (where M is the Mach number)
and distance by the bubble radius, r0. Note, it takes 0.0025 normalized time units for a shock to
cross r0 in air.

shock crosses over the interface. Our investigation shows that the configurations of
the shock refraction have an important effect on vorticity generation. The complexity
of the interaction of a shock with a heavy spherical bubble varies with time.

The ‘early’ phase begins at the time of initial contact of the incident planar shock
waves with the back (upstream) side of the bubble and lasts until the time of last
contact with the front (downstream) side of the bubble. This phase is divided into
four subphases as shown in the numerical shadowgraphs of figure 5. Just after the
incident shock impinges on the spherical bubble interface all three shock waves, I,
uR and iT, meet at a node, o, that is we have a regular reflection (conventionally
designated as RR in Ben Dor 1992), as shown in row 1.

In the second row, when the incident shock is near or at the apex of the bubble,
two types of refraction are indicated: in (a)(i) for M = 1.14 we have regular reflection
with a reflected expansion wave but in (b)(ii) and (c)(ii) (for M = 2.5 and M = 5.0)
we have a Mach reflection type of refraction (MR) in which a Mach stem, Ms, arises
on the interface. The configuration of MR remains for all the following times. Note
that the triple point (downstream end of the reflected shock) is moving vertically
along the incident shock.
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Figure 6. ∇ · u patterns for an M = 1.14 shock refraction on an air–R12 bubble.

In the third row the incident wave curves around the back side of the bubble,
and maintains a near-normal intersection with the bubble surface, a phenomenon
first emphasized by Samtaney & Zabusky (1994). Not clearly seen in this figure
is the wave behaviour upstream of the bubble and the interior transmitted shock
interaction, which we will discuss below.

In row (iv), a closed shock cavity begins to collapse within the bubble. At larger
Mach numbers, (b)(iv) and (c)(iv), the downstream bubble interface is very close to
the transmitted wave, that is the internal cavity of unaffected gas has a decreasing
volume and increasing surface curvature. Also in (b)(iv) and (c)(iv) the circulation is
sufficiently strong to begin to roll up the interface near its apex, as discussed below.

3.1.1. Cavity implosion and re-expansion and downstream shock collisions

We now discuss wave patterns for an M = 1.14 shock by examining ∇·u in figure 6.
The collapsing cavity in 6(b) has a corner shock, cS, at its highest curvature point,
a generic occurrence that is seen more clearly at cases of higher Mach numbers,
below. At (c) the interior shock cavity has collapsed. In (d) and (e) the interior cavity
expands and collides with the interface and a secondary shock (sS) is transmitted.
Note that MS indicates the Mach shock on the downstream side and dR, which
emanates eventually from the triple point (TP), is a downstream reflected wave, or
alternatively a result of the collision of the separate parts of the incident shock on
the downstream side of the bubble. In (f–h), we see manifestations of the Haas &
Sturtevant (1987) phenomenon where two successive upstream propagating reflected
wave fronts, idR1 and iuR1, were found inside the bubble. These fronts are expansion
and compression waves, respectively, related to the upstream and the downstream
edge of the expanding cavity that have both been reflected from the back side of the
bubble. Note, iuR1 catches up to idR1 just before (f). This phenomenon is particularly
clear in figure 7, the on-axis pressure at four time points in 7(a) (corresponding to
6(b–e)) and three time points in 7(b) (corresponding to 6( f–h)). The average position
of the front and back sides of the bubbles, FS and BS, are indicated for clarity. The
first three times in 7(a) show increasing pressure within the cavity during its collapse
and the three curves in 7(b) show the lower-pressure expansion within the bubble.
After these waves reach the front side of the bubble interface, they again focus, as
shown in the density plot (see figure 11g), and create another upstream transmitted
shock (uT2).
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Figure 7. Pressure distribution along the x-axis for shock refraction on air–R12 bubble for M = 1.14
and an initial bubble radius of 1.0. We see the collapsing and re-expanding cavity and the generation
of internal and external waves. B and F are the average positions of the back and front bubble
interface, respectively; MS, Mach shock; sS, secondary shock. (a) Curves correspond to figure 6(b),
(c), (d) and (e). (b) curves correspond to figure 6( f ), (g) and (h).

Figure 8 shows the space–time diagram of pressure distribution along the x-axis
for M = 1.14 and 2.5. We see clearly many of the phenomena discussed above. Here,
(1) is the location where the shock contacts the front side of the bubble (F) and
an (iT) shock is seen within the bubble. At (2) the incident shock (I) first touches
the axis on the downstream side of the bubble (the location of the starting point of
the secondary shock). The notch to the left of (2) and the yellow-red high-pressure
region below it is associated with the collapsing cavity. The width of the notch is the
spatial extent of uncollapsed cavity, the yellow-red sS is the downstream secondary
shock, and dark-blue dJ is the downstream jet both arising from the interior cavity
collapse and will be discussed below. Just below the yellow bifurcation, we see a
white expansion region, iR1, which is an interior wave arising from reflection on the
back side of the bubble. Next, (3) indicates the location of an upstream jet uJ caused
by iR1 focusing near the front side of the bubble. Note that iR2, inside the bubble,
results from the reflection of iR1 from the upstream bubble interface. Finally, (4) is
location of the starting points for the next downstream and upstream jets.

Note that for the weak incident shock in figure 8(a), all the velocities, at the
bubble front side, the downstream and upstream jets, are near constant. However, in
figure 8(b), the upstream interface, F, moves with a non-constant velocity, associated
with the bubble oscillation during shock passage, as seen in figures 13 and 14
where one observes variations in bubble volume. The sS overtakes the I, an effect
more clearly seen at higher Mach number, as discussed below. Note the upstream
transmitted waves uT1 and uT2.

We next study the cavity implosion phenomena and downstream coherent shock
patterns for M = 2.5 and 5.0 in figures 9(a–f ) and 9(g–i), respectively. The white
regions are expansions, i.e. positive dilitation. In 9(a), although we are beyond the
early phase, a finite cavity still exists. The dominating feature in figure 9(a, b) is the
four-shock interaction associated the collapsing cavity. Here T and dT are the inner
transmitted shock and its (inner) downstream component, separated by a sharp kink,
from which two shocklets emanate. The other dominating features in figure 9(a–c)
are the r-directed shock wave (which arises from the collision of the curved I shock
waves on the bubble back side) and the Mach disk. Below we show that a strong
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shear layer arises behind the Mach disk. Also in figure 9(c), the ‘secondary shock’
(sS) develops from the expanding cavity, and we track this feature in all subsequent
frames. It overtakes the I shock in figure 9( f ) (Mach 2.5).

Very similar phenomena occur for M = 5.0. In figure 9(g–i) we show the ∇ · u
for tM = 0.0054, 0.0079 and 0.0132 which corresponds closely to figure 9(a, d, f ). An
upstream transmitted shock (uT1) arises from the interaction between the shocklet
and the interface in figure 9(g). It overtakes R on the upstream side, as shown in



Cavity implosion morphologies and vortical projectiles 339

(b) t=0.0058

MS2

dT

(a) t=0.0055 (c) t=0.0060

(d ) t=0.0075 (e) t=0.0088 ( f ) t=0.0137

(g) t=0.0054 (h) t=0.0079 (i) t=0.0132

I

MS

I

sS

I

T

R

uT1

I

sS

R

I

V

sS

R
uT2

V

I

I

MS1

TP2

R

I

uT1

R
I

uT1
TP

R

uT1 sS

uT2

TP1

uT1

MS

uT1

sS

V

sS

V SL

MS

Figure 9. ∇ · u patterns for shocks interacting with an R12 bubble, (a–f), M = 2.5, (g–i), M = 5.0.

figure 9(i). Also, we see a ‘Complex Mach Reflection’ which has a triple point (TP)
in figure 9(h), and a ‘Double Mach Reflection’ which has two triple points (TP1) and
(TP2) in figure 9(i). Here, SL is the primary slipline (or shear layer). In figure 9(d–f )
the r-directed shock interacts with the density interface and has a large influence on
vorticity generation, as discussed later.

The timing and magnitude of these events are shown in the maximum pressure
and temperature diagrams at three Mach numbers in figure 10(a, b). For the pressure
the two highest Mach numbers show two strong peaks, which correspond to the
collapse of the interior cavity within the bubble. For M = 5 the maximum value of
the pressure during the first bubble collapse is about six times higher than initial
pressure. The temperature signals in figure 10(b) have a similar behaviour.

These phenomena are very rapid and associated with large compressions during
collapse. In real fluid flows, the peaks will be affected by dissipation and thermal
conductivity effects, which have been ignored in this work. An optimization question
for future study is: what combination of physical and geometric parameters will
lead to a maximum amplification of pressure and temperature? We note that the
magnitude of the pressure enhancement is quantitatively different from the case of
a shock crossing a bubble in liquid (Ding & Gracewski 1995) which arises from a
different equation of the state.

3.2. Circulation deposition and scaling

Let us examine the vorticity/density (upper/lower) sequences in figures 11, 13 and 14,
corresponding to M = 1.14, 2.5, 5.0. In figure 11(a, b) (see p. 338) the incident shock
is in contact with the bubble and in the later frames it interacts with itself as it moves
downstream. The interfacial layer of vorticity is essentially undisturbed in frames
(a–c) and begins to roll-up in (d–g). The cavity collapses in (d) and an expansion is
evident in (e). This is accompanied by upstream and downstream signals in density
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and pressure (which we have discussed). The outer wave structures are interacting
with the backside bubble interface and corresponding vortex layers in (d) and (e).

As the interface begins to roll up positive (red-yellow) vorticity always appears. This
vorticity is generated by ‘baroclinic processes’, whose density gradient is associated
with the interface. The scaling of this phenomenon is under investigation. In (e) and
(f), we see a downstream jet (dJ) issuing from the bubble which becomes progressively
weaker in (g–j). Moreover, a small transient upstream jet (uJ) is apparent in (g).

These features are clearly seen in the integrated vorticity space-time diagram, fig-
ures 12(a) and 12(b) which show the integrated net and positive vorticity, respectively.
At (1) the shock first interacts with the bubble and the most gradual sloping line
indicates the incident shock (I) in both diagrams. The transmitted shock generates
positive (blue in b) vorticity as it straightens. At (2), the cavity collapses and produces
a downstream jet (dJ), indicated by the red domain in (a) and the red-yellow-dark blue
domain in (b). The striated black regions moving toward the right (V) are indicative
of roll-up and vortices merge at (3). This is accompanied by strong baroclinic effects
along the high density gradients, for in 12(a) we see a small red-yellow region to the
left of the blue region. This corresponds to figure 11(h) at t = 0.0238. In this case
the positive vorticity is due to the the interaction between the backside interface and
the interior wave reflected from the front side of the bubble. In 12(a) the second blue
region (4) at tM = 0.05 arises when the extended negative vortex structure has made
another half a rotation. When the internal wave hits the upstream side we see an
‘upstream’ jet (uJ), a very weak event. Many of the structures have dimensions corre-
sponding to the interfacial layer thickness (about three grid lengths). Thus, for times
after that corresponding to figure 11(h), our results provide only heuristic guidance
for the emerging turbulent mixing.

Figures 13 and 14 show similar quantities at M = 2.5 and 5.0. Here we see
an asymmetrical deposition of primary negative vorticity (more on the downstream
side) and its ‘separation’ from the bubble interface at (d–f). Also seen at (f) is the
appearance of the primary downstream vortex ring. Note the downstream ring has
more fine structure in figure 14. At M = 2.5 and 5.0 a new phenomenon is evident
near the apex of the bubble, namely a ‘complex’ vortex ring, or ‘vortical projectile’.
Its positive vorticity arises mainly from the upward going r-directed shock wave that
interacts with the downstream bubble interface. The net result is a diffuse complex
three-vortex region configuration which binds and begins to move upward and to
the right in figures 13(h, i) and 14(i–k). Figure 15 (p. 341) shows the vorticity in the
M = 2.5 case.
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Figure 15. Vorticity M = 2.5. The left-hand frame is the colour version of figure 13(h); (a–c) are
zooms of the vorticity near the apex of the bubble where a vortical projectile is forming. (a) and (c)
correspond to figures 13(h) and 13(i).

Figure 16 shows the space–time diagram for the net circulation for M = 2.5 and 5.0.
The downstream supersonic vortex ring (dVR) associated with the downstream jet is
a persistent feature. The delay or eruption time for the generation of the downstream
vortex ring that we mentioned above is seen at (2) in figure 16.
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Figure 17 quantifies the positive, negative and net circulations (or integrated vor-
ticity) in various spatial domains. These computed circulations are normalized by the
circulation deposited on the upper-half of the interface as obtained from the scaling
formula, (5.12) of Samtaney & Zabusky (1994):

Γ̃ =
(

1 +
π

2

) 2γ1/2

1 + γ
(1− η−1/2)(1 +M−1 + 2M−2)(M − 1)r0cs, (26)

where r0 is the bubble radius and cs is the ambient speed of sound in air. The
integrations for circulations associated with the bubble are obtained by correlating
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with the bubble fluid, ρ2. That is we add the relevant circulation if the density
associated with the bubble gas is above some threshold. We can do this because the
code is multispecies and treats the bubble fluid separately from the ambient fluid.
Similarly, the circulations associated with the vortex ring are obtained by adding
all relevant circulations downstream of the right-hand edge of the bubble to the
right-hand end of the domain.

First, for M = 2.5 and M = 5.0, we note that during the initial phase, the results are
in excellent agreement because the normalization formula is more accurate at higher
Mach numbers. The primary negative circulation grows linearly, then decreases in
magnitude and soon begins an increase, an effect observed earlier for shock–cylinder
interactions. At low Mach number the secondary positive circulation generated inside
the bubble is slightly larger than that generated by the Mach disk and they both
approach a constant value. For M = 5.0, the slip surface of the Mach disk yields large
positive and negative circulations whereas the primary negative circulation associated
with the bubble interface has been decreasing slowly.

We conjecture that in three dimensions, with axisymmetry relaxed, one could
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have a very complex interaction resulting in multi-directional concentrated jets and
vortical projectiles which arise from the vorticity deposited by multi-directional shocks
interacting with the evolving bubble interface. These effects should be addressed when
turbulent mixing processes are considered in an environment of shocks interacting
with many bubbles. We expect to contribute to solving this problem.

4. Discussion and conclusions
In the present work we have used the Harten–Yee TVD scheme to solve the

axisymmetric Euler equations for a planar shock and a spherical F/S (R12) bubble
for M 6 5. We have discussed the wave and vorticity structures associated with
collapse and re-expansion of the cavity in the bubble formed by the transmitted shock
at several Mach numbers. We have visualized the shock implosion morphologies and
quantified vorticity generation. Some interesting points are the following:

(1) All types of the shock configurations, from RR to MR will occur when the
shock passes over a bubble (even for a weak, M = 1.14 incident shock). Negative
vorticity is deposited due to baroclinicity on the F/S interface. For strong shocks the
negative vorticity begins to separate from the downstream interface of the bubble.

(2) The interior transmitted shock forms a collapsing cavity. At its point of highest
curvature this cavity has a ‘triple point’ at which a positive vortex layer is created
and three transmitted shocks are interacting with each other.
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(3) Owing to the interaction of two curved approaching incident shocks on the
downstream side of the bubble, an axisymmetric Mach disk occurs on the downstream
side of the bubble. A vortex ring arises from these conical vortex layers. The Mach
disk grows in a self-similar manner.

(4) On the downstream side, the supersonic jet may overtake the incident shock. A
weak transient upstream jet is produced when the interior reflected wave focuses on
the front of the interface.

(5) The interior shock wave is reflected between the back and front of the bubble
interface, which causes the bubble to oscillate. For a strong shock these interactions
modulate the velocity of the smooth front side of the bubbles.

(6) A downstream r-directed shock has a large influence on the generation of a
secondary positive vorticity layer on the back side. This vortex layer may be large
and can bind with the primary negative circulation to form a diffuse vortex ring or
vortical projectile which has a vertical component of velocity that carries it beyond
the original apex of the bubble.
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